WhatsApp Join Here

Search Suggest

Posts

Plus Two Mathematics Second Terminal Christmas Exam Answer Key 2025

Mathematics Answer Key - Dec 2025

Plus Two Mathematics Answer Key
December 2025 Question Paper

Section 1: Answer any 6 questions from 1 to 8 (6 × 3 = 18 marks)

Question 1

(i) Let R be a relation defined on A = {1, 2, 3} by R = {(1,1), (2,2), (3,3), (1,3)}. Then R is:

Answer: (d) reflexive and transitive

Explanation:

  • Reflexive: Yes, because (1,1), (2,2), (3,3) are all present.
  • Symmetric: No, because (1,3) is present but (3,1) is not.
  • Transitive: Yes, because the only nontrivial case is (1,3) and (3,3) → (1,3) is already present.

(ii) Make the relation R equivalence by adding minimum number of ordered pairs.

Answer: Add (3,1) to make it symmetric.

New equivalence relation: \( R_{eq} = \{(1,1), (2,2), (3,3), (1,3), (3,1)\} \)

(iii) Write the equivalence class [1].

Answer: \( [1] = \{1, 3\} \)

Question 2

(i) \(\sin^{-1}x : [-1, 1] \rightarrow A\)
Write an example of A other than principal value branch.

Answer: \( A = \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \)

(Any interval of length π where sin is bijective)

(ii) Simplify: \(\tan^{-1} \left( \frac{\cos x}{1 - \sin x} \right), \quad -\frac{\pi}{2} < x < \frac{3\pi}{2}\)

Answer:

For \(-\pi/2 < x < \pi/2\): \( \frac{x}{2} + \frac{\pi}{4} \)

For \(\pi/2 < x < 3\pi/2\): \( \frac{x}{2} + \frac{\pi}{4} - \pi \)

Explanation: \(\frac{\cos x}{1 - \sin x} = \tan\left(\frac{\pi}{4} + \frac{x}{2}\right)\) after simplification.

Question 3

(i) \(A = \begin{bmatrix} a & c & 0 \\ b & d & 0 \\ 0 & 0 & b \end{bmatrix}\) is a scalar matrix. Find \(a + 2b + 3c + d\).

Answer: 4

Explanation: For a scalar matrix, all diagonal elements are equal and off-diagonal elements are 0. So \(a = d = b\) and \(c = 0\). Let \(k = a = b = d\), then \(a + 2b + 3c + d = k + 2k + 0 + k = 4k\). If we assume the scalar is 1, then answer is 4.

(ii) \(A = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}, B = [-2 \quad -1 \quad -4]\)
Find \(B^T A^T\).

Answer: \(\begin{bmatrix} 2 & -4 & -6 \\ 1 & -2 & -3 \\ 4 & -8 & -12 \end{bmatrix}\)

Calculation: \(B^T = \begin{bmatrix} -2 \\ -1 \\ -4 \end{bmatrix}\), \(A^T = [-1, 2, 3]\)
\(B^T A^T = \begin{bmatrix} (-2)(-1) & (-2)(2) & (-2)(3) \\ (-1)(-1) & (-1)(2) & (-1)(3) \\ (-4)(-1) & (-4)(2) & (-4)(3) \end{bmatrix}\)

Question 4

Solve the system of equations using matrix method: \(2x + 3y = 4; \quad 4x + 5y = 6\)

Answer: \(x = -1, y = 2\)

Solution:

Matrix form: \(\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}\)

Determinant = \(10 - 12 = -2\)

\(x = \frac{\begin{vmatrix} 4 & 3 \\ 6 & 5 \end{vmatrix}}{-2} = \frac{20 - 18}{-2} = \frac{2}{-2} = -1\)

\(y = \frac{\begin{vmatrix} 2 & 4 \\ 4 & 6 \end{vmatrix}}{-2} = \frac{12 - 16}{-2} = \frac{-4}{-2} = 2\)

Question 6

The surface area of a cube increases at the rate of 72 cm²/sec. Find the rate of change of its volume when the edge is 3 cm.

Answer: 54 cm³/sec

Solution:

Surface area \(S = 6s^2\) ⇒ \(\frac{dS}{dt} = 12s \frac{ds}{dt}\)

Given \(\frac{dS}{dt} = 72\), \(s = 3\):

\(72 = 12(3)\frac{ds}{dt}\) ⇒ \(\frac{ds}{dt} = 2\) cm/s

Volume \(V = s^3\) ⇒ \(\frac{dV}{dt} = 3s^2 \frac{ds}{dt} = 3(9)(2) = 54\) cm³/s

Question 7

(i) Evaluate \(\int \frac{x^2 \tan^{-1}(x^3)}{1 + x^6} \, dx\)

Answer: \(\frac{(\tan^{-1}(x^3))^2}{6} + C\)

Solution: Let \(t = x^3\), \(dt = 3x^2 dx\)

Integral becomes \(\frac{1}{3} \int \frac{\tan^{-1} t}{1 + t^2} dt\)

Let \(u = \tan^{-1} t\), \(du = \frac{dt}{1 + t^2}\)

⇒ \(\frac{1}{3} \int u du = \frac{u^2}{6} + C\)

(ii) If \(\int \frac{1}{4 + x^2} \, dx = \frac{\pi}{6}\), then find the value of \(a\).

Answer: \(a = 2\sqrt{3}\)

Solution: Assuming limits are from 0 to \(a\):

\(\int_0^a \frac{1}{4+x^2} dx = \frac{1}{2} \tan^{-1}\frac{x}{2} \Big|_0^a = \frac{1}{2} \tan^{-1}\frac{a}{2} = \frac{\pi}{6}\)

⇒ \(\tan^{-1}\frac{a}{2} = \frac{\pi}{3}\) ⇒ \(\frac{a}{2} = \sqrt{3}\) ⇒ \(a = 2\sqrt{3}\)

Question 8

If the vector \(8\hat{i} + a\hat{j}\) is of magnitude 10 in the direction of \(4\hat{i} - 3\hat{j}\), find \(a\).

Answer: \(a = -6\)

Solution: Direction of \(4\hat{i} - 3\hat{j}\): unit vector = \(\frac{4}{5}\hat{i} - \frac{3}{5}\hat{j}\)

So \(8\hat{i} + a\hat{j} = k\left(\frac{4}{5}\hat{i} - \frac{3}{5}\hat{j}\right)\) for some \(k > 0\)

Comparing: \(8 = \frac{4k}{5}\) ⇒ \(k = 10\)

\(a = -\frac{3k}{5} = -\frac{30}{5} = -6\)

Check: \(|8\hat{i} - 6\hat{j}| = \sqrt{64 + 36} = 10\) ✓

Section 2: Answer any 6 questions from 9 to 16 (6 × 4 = 24 marks)

Question 9

(i) The function \(f(x) = |x| + |x + 2|\) is:

Answer: (c) continuous, but not differentiable at \(x = 0\) and \(x = -2\)

Explanation: The function is continuous everywhere (sum of continuous functions). It has corners at \(x = 0\) and \(x = -2\) where the derivative doesn't exist.

(ii) If \(y^x = xy\), find \(\frac{dy}{dx}\).

Answer: \(\frac{dy}{dx} = y \cdot \frac{x-1 - x\ln x}{x(x-1)^2}\)

Solution: Take ln: \(x \ln y = \ln x + \ln y\)

Rearrange: \((x-1)\ln y = \ln x\) ⇒ \(\ln y = \frac{\ln x}{x-1}\)

Differentiate: \(\frac{y'}{y} = \frac{\frac{1}{x}(x-1) - \ln x}{(x-1)^2}\)

⇒ \(y' = y \cdot \frac{x-1 - x\ln x}{x(x-1)^2}\)

Question 10

(i) \(f(x) = (x-1)e^x + 1\) is increasing for:

Answer: (b) \(x \geq 0\)

Solution: \(f'(x) = e^x + (x-1)e^x = xe^x\)

\(f'(x) \geq 0\) when \(x \geq 0\) (since \(e^x > 0\))

(ii) Find intervals where \(f(x) = \sin x + \cos x\), \(0 \leq x \leq 2\pi\) is increasing/decreasing.

Answer:

  • Increasing: \((0, \pi/4) \cup (5\pi/4, 2\pi)\)
  • Decreasing: \((\pi/4, 5\pi/4)\)

Solution: \(f'(x) = \cos x - \sin x\)

\(f'(x) = 0\) ⇒ \(\tan x = 1\) ⇒ \(x = \pi/4, 5\pi/4\) in \([0, 2\pi]\)

Test intervals to determine sign of \(f'(x)\).

Question 11

Show that among all rectangles inscribed in a given circle, the square has maximum area.

Proof: Let circle radius = \(R\), rectangle sides = \(2a, 2b\)

Constraint: \(a^2 + b^2 = R^2\)

Area \(A = 4ab = 4a\sqrt{R^2 - a^2}\)

Maximize: \(\frac{dA}{da} = 4\sqrt{R^2-a^2} - \frac{4a^2}{\sqrt{R^2-a^2}} = 0\)

⇒ \(R^2 - a^2 = a^2\) ⇒ \(a^2 = R^2/2\) ⇒ \(a = R/\sqrt{2}\)

Then \(b = \sqrt{R^2 - R^2/2} = R/\sqrt{2}\) ⇒ \(a = b\) ⇒ square.

Question 12

(i) Draw rough sketch of \(y^2 = 16 - x^2\).

Answer: Circle with center at origin, radius 4.

(ii) Find area bounded by \(y^2 = 16 - x^2\) in III quadrant using integration.

Answer: \(4\pi\) square units

Solution: In III quadrant: \(x < 0, y < 0\)

Area = \(\int_{-4}^0 \sqrt{16-x^2} dx\) (since \(y = -\sqrt{16-x^2}\), we take positive for area)

This is quarter circle area = \(\frac{1}{4} \pi (4^2) = 4\pi\)

Question 13

Evaluate \(\int_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} \, dx\)

Answer: \(\frac{a}{2}\)

Proof: Let \(I = \int_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a-x}} dx\)

Also \(I = \int_0^a \frac{\sqrt{a-x}}{\sqrt{a-x} + \sqrt{x}} dx\) (substitute \(x \rightarrow a-x\))

Add: \(2I = \int_0^a 1 dx = a\) ⇒ \(I = a/2\)

Question 14

(i) Find order and degree: \(\frac{d^3y}{dx^3} + x \left( \frac{dy}{dx} \right)^5 = 4 \log \left( \frac{d^4y}{dx^4} \right)\)

Answer: Order = 4, Degree not defined

Explanation: Highest derivative is \(d^4y/dx^4\) (order 4). Due to log term, the equation is not a polynomial in derivatives, so degree is not defined.

(ii) Principal increases at 5% per year. In how many years will ₹1000 double itself?

Answer: Approximately 13.86 years

Solution: \(\frac{dP}{dt} = 0.05P\) ⇒ \(P = P_0 e^{0.05t}\)

\(2P_0 = P_0 e^{0.05t}\) ⇒ \(e^{0.05t} = 2\) ⇒ \(t = \frac{\ln 2}{0.05} \approx 13.86\) years

Section 3: Answer any 3 questions from 17 to 20 (3 × 6 = 18 marks)

Question 17

(i) Integrate: \(\frac{5x + 3}{\sqrt{x^2 + 4x + 10}}\)

Answer: \(5\sqrt{(x+2)^2+6} - 7 \ln|(x+2) + \sqrt{(x+2)^2+6}| + C\)

Solution: Complete square: \(x^2+4x+10 = (x+2)^2+6\)

Let \(u = x+2\), then \(5x+3 = 5u-7\)

Integral = \(\int \frac{5u-7}{\sqrt{u^2+6}} du\)

= \(5\sqrt{u^2+6} - 7 \ln|u+\sqrt{u^2+6}| + C\)

(ii) Integrate: \(\sin^{-1}x\)

Answer: \(x\sin^{-1}x + \sqrt{1-x^2} + C\)

Solution: Integration by parts: \(u = \sin^{-1}x, dv = dx\)

⇒ \(x\sin^{-1}x - \int \frac{x}{\sqrt{1-x^2}} dx\)

= \(x\sin^{-1}x + \sqrt{1-x^2} + C\)

Question 19

(i) Angle between \(\vec{a} \times \vec{b}\) and \(\vec{b} \times \vec{a}\) is:

Answer: \(\pi\) (180°)

Explanation: \(\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})\), so they are opposite vectors.

(ii) Find vector \(\vec{d}\) perpendicular to both \(\vec{a} = \hat{i} - \hat{j}\) and \(\vec{b} = 3\hat{j} - \hat{k}\), with \(\vec{c} \cdot \vec{d} = 1\) where \(\vec{c} = 7\hat{i} - \hat{k}\).

Answer: \(\vec{d} = \frac{1}{4}\hat{i} + \frac{1}{4}\hat{j} + \frac{3}{4}\hat{k}\)

Solution: \(\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 0 \\ 0 & 3 & -1 \end{vmatrix} = \hat{i} + \hat{j} + 3\hat{k}\)

So \(\vec{d} = k(\hat{i}+\hat{j}+3\hat{k})\)

\(\vec{c} \cdot \vec{d} = (7\hat{i} - \hat{k}) \cdot (k\hat{i}+k\hat{j}+3k\hat{k}) = 7k - 3k = 4k = 1\) ⇒ \(k = 1/4\)

(iii) Area of triangle with vertices A(1,1,2), B(2,3,5), C(1,5,5).

Answer: \(\frac{\sqrt{61}}{2}\) square units

Solution: \(\vec{AB} = \hat{i}+2\hat{j}+3\hat{k}\), \(\vec{AC} = 0\hat{i}+4\hat{j}+3\hat{k}\)

\(\vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 0 & 4 & 3 \end{vmatrix} = -6\hat{i} - 3\hat{j} + 4\hat{k}\)

Magnitude = \(\sqrt{36+9+16} = \sqrt{61}\)

Area = \(\frac{1}{2} \sqrt{61}\)

Question 20

(ii) Find shortest distance between lines:
\(\vec{r} = \hat{i}+2\hat{j}+\hat{k} + \lambda(\hat{i}-\hat{j}+\hat{k})\) and
\(\vec{r} = 2\hat{i}-\hat{j}-\hat{k} + \mu(2\hat{i}+\hat{j}+2\hat{k})\)

Answer: \(\frac{3\sqrt{2}}{2}\) units

Solution:

Line 1: Point A(1,2,1), direction \(\vec{d_1} = (1,-1,1)\)

Line 2: Point B(2,-1,-1), direction \(\vec{d_2} = (2,1,2)\)

\(\vec{AB} = (1,-3,-2)\)

\(\vec{d_1} \times \vec{d_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 2 & 1 & 2 \end{vmatrix} = -3\hat{i} + 0\hat{j} + 3\hat{k}\)

Magnitude = \(\sqrt{9+9} = 3\sqrt{2}\)

\(\vec{AB} \cdot (\vec{d_1} \times \vec{d_2}) = (1)(-3)+(-3)(0)+(-2)(3) = -9\)

Shortest distance = \(\frac{|\vec{AB} \cdot (\vec{d_1} \times \vec{d_2})|}{|\vec{d_1} \times \vec{d_2}|} = \frac{9}{3\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2}\)

Post a Comment

Oops!
It seems there is something wrong with your internet connection. Please connect to the internet and start browsing again.
AdBlock Detected!
We have detected that you are using adblocking plugin in your browser.
The revenue we earn by the advertisements is used to manage this website, we request you to whitelist our website in your adblocking plugin.
Site is Blocked
Sorry! This site is not available in your country.